LAHORE BOARD

GRADE 9

MATHS

2019 GROUP 1

MCQ'S

Lesson 1 of 38
Section-A (MCQs)
i) The square root of $a^{2}-2 a+1$ is
A. $\pm(a+1)$
B. $\pm(a-1)$
C. $(a-1)$
D. $(a+1)$

Answer:
B. $\pm(\mathrm{a}-1)$
ii) A diagonal of a parallelogram divides it into \qquad congruent triangles.
A. 2
B. 3
C. 4
D. 6

Answer:
A. 2
iii) Two parallel lines intersect at \qquad point/points. (Mark 1)
A. Three
B. Two
C. One
D. No

Answer:
D. No
iv) The diagonals of parallelogram \qquad each other.
A. Bisect
B. Trisect
C. Bisect at right angle
D. Trisect at right angle

Answer:
A. Bisect
A. 3-by-2
B. 2-by-3
C. 1-by-3
D. 3-by-1

Answer:
B. 2-by-3
v) Order of transpose of matrix $\left[\begin{array}{ll}2 & 1 \\ 0 & 1 \\ 3 & 2\end{array}\right]$ is:
(Mark 1)
A. 3-by-2
B. 2-by-3
C. 1-by-3
D. 3-by-1

Answer:
B. 2-by-3
$v i) x=0$ is a solution of the inequality
A. $x>0$
B. $3 x+5<0$
C. $x+2<0$
D. $x-2<0$

Answer:
D. $x-2<0$
vii) Any point on the bisector of an angle is \qquad from its arms. (Mark 1)
A. Un-equidistance
B. Equidistance
C. Large disatnce
D. Small distance

Answer:
B. Equidistance
viii) $(3+\sqrt{2})(3-\sqrt{2})$ is equal to:
(Mark 1)
A. 7
B. -7
C. -1
D. 1

Answer:
A. 7
ix) Unit of ratio is \qquad .
(Mark 1)
A. Degree
B. None
C. cm
D. π

Answer:
B. None
x) Point (-3,-3) lies in quadrant.
(Mark 1)
A. I
B. II
C. III
D. IV

Answer:
C. III
xi) The logarithm of unity to any base is \qquad (Mark 1)
A. 1
B. 10
C. e
D. 0

Answer:
D. 0
xii) A ray has endpoints
(Mark 1)
A. 1
B. 2
C. 3
D. 4

Answer:
A. 1
xiii) Distance between points $(0,0)$ and $(1,1)$ is \qquad
A. 0
B. 1
C. 2
D. V2

Answer:
D. 12
xiv) The conjugate of $5+4 i$ is
(Mark 1)
A. $-5+4 i$
B. $-5-4 i$
C. $5-4 \mathrm{i}$
D. $5+4 i$

Answer:
C. $5-4 i$
xv) In a parallelogram opposite angles are \qquad (Mark 1)
A. Perpendicular
B. Equal
C. Unequal
D. Acute

Answer:
B. Equal
Q. 2 i) Define column matrix.
(Marks 2)
Q. 2 ii) Find the transpose of the matrix: $B=\left[\begin{array}{lll}5 & 1 & -6\end{array}\right]$ (Marks 2)
Q. 2 iii) Simplify: $\sqrt[2]{-125}$
(Marks 2)
Q. 2 iv) Write real and imaginary part of the number -1+2i.
Q. 2 v) Express in scientific notation: 83,000
Q. 2 vi) Find the value of x when $\log _{3} x=4$
Q. 2 vii) Evaluate $\frac{x^{3} y-2 z}{x z}$ for $x=-1, y=-9, z=4$
Q. 2 ix) Factorize: $24 x^{2}-65 x+21$
(Marks 2)
(Marks 2)
Q. 3 i) Find the H.C.F of the following expression $10 x y^{2} z, 85 x^{2} y z$ and 187 $x y z^{2}$
(Marks 2)
Q. 3 ii) Solve the equation: $\sqrt{5 x-7}-\sqrt{x+10}=0$
(Marks 2)
Q. 3 iii) Solve: $|2 x+3|=11$
(Marks 2)
Q. 3 iv) Find the value of m and c of $2 x-y=7$ by expressing it in the form of $y=m x+c$.
Q. 3 v) Define origin.
$Q .3$ vi) Find the distance between the points $A(-8,1), B(6,1) . \quad$ (Marks 2)
Q. 3 vii) Define Scalene triangle.
Q. 3 viii) State S.A.S postulate?
(Marks 2)
Q. 3 ix) Define parallelogram.
(Marks 2)
Q. 4 i) Define the bisector of a line segment.
(Marks 2)
Q. 4 ii) $\mathbf{3 ~ c m}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$ are the length of the triangle. Give the reason.
(Marks 2)
Q. 4 iii) Define congruent triangles.
(Marks 2)
Q. 4 iv) Find unknown value of x in given figure:
(Marks 2)
Q. 4 v) What is converse of Pythagoras theorem.
(Marks 2)
Q. 4 vi)
(Marks 2)

Find the area of given figure
\square 3 cm
Q. 4 vii) Define the triangular region.
(Marks 2)
Q. 4 viii) What is meant by circumcentre?
(Marks 2)
Q. 4 ix)
(Marks 2)
Construct a $\triangle A B C$, in which $m \overline{A B}=4.2 \mathrm{~cm}, \mathrm{~m} \overline{\mathrm{BC}}=3.9 \mathrm{~cm}, \mathrm{~m} \overline{\mathrm{CA}}=3.6 \mathrm{~cm}$
Q. 5 a) Solve the system of linear equations by Cramer's rule:
$2 x-2 y=4$
$3 x+2 y=6$
(Marks 4)
Q. 5 b)
(Marks 4)

Simplify $\left(\frac{a^{2 l}}{a^{l+m}}\right) \cdot\left(\frac{a^{2 m}}{a^{m+n}}\right) \cdot\left(\frac{a^{2 n}}{a^{n+l}}\right)$
Q. 6 a) Use log table to find the value of : 0.8176×13.64
(Marks 4)
Q. 6 b)
(Marks 4)
If $m+n+p=10$ and $m n+n p+m p=27$ then find value of $m^{2}+n^{2}+p^{2}$
Q. 7 a) Factorize: $9 x^{4}+36 y^{4}$.
(Marks 4)
Q. 7 b) For what value of k is $(x+4)$ the H.C.F of $x^{2}+x-(2 k+2)$ and $2 x^{2}+k x-12$?
(Marks 4)
Q. 8 a) Solve: $-5 \leq \frac{4-3 x}{2}<0$
(Marks 4)

Construct the triangle ABC , draw bisectors of their angles and verify their concurrency.
$\mathrm{m} \overline{\mathrm{AB}}=3.6 \mathrm{~cm}, \mathrm{~m} \overline{\mathrm{BC}}=4.2 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{~B}=75^{\circ}$

Q.9) Prove that any point inside an angle, equidistant from its arms, is on the bisector of it.
(Marks 8)

OR
Q.9) Prove that parallelograms on the same base and between the same parallel lines (or of the same altitude) are equal in area.
(Marks 8)

LAHORE BOARD

GRADE 9

MATHS

2019 GROUP 2

MCQ'S

Section-A (MCQs)

i) In a parallelogram opposite angles are:
(Mark 1)
A. unequal
B. Equal/congruent
C. Non-congruent
D. Concurrent

Answer:
B. Equal/congruent
ii) The factors of $x^{2}-5 x+6$ are:
(Mark 1)
A. $(x+1),(x-6)$
B. $(x-2),(x-3)$
C. $(x+6),(x-1)$
D. $(x+2),(x+3)$

Answer:
B. $(x-2),(x-3)$
iii) Distance between points $(0,0)$ and $(1,1)$ is \qquad (Mark 1)
A. 0
B. 1
C. 2
D. V2

Answer:
D. $\sqrt{ } 2$
iv) A triangle having two sides congruent is called \qquad
A. Scalene
B. Right-angled
C. Equilateral
D. Isosceles

Answer:
D. Isosceles
v) The symbol of inequality is
(Mark 1)
A. =
B. \neq
C. ~
D. \geq

Answer:
D. \geq
vi) $\log _{b} a \times \log _{c} b$ can be written as:
(Mark 1)
A. $\log _{a} C$
B. $\log _{b} c$
C. $\log _{a} b$
D. $\log _{c} a$

Answer:
D. $\log _{c} a$
vii) Equality of two ratios is defined as \qquad :
(Mark 1)
A. Ratio
B. Proportion
C. Equality
D. Congruent

Answer:
B. Proportion
viii) The idea of matrices was given by
(Mark 1)
A. Arthur Cayley
B. Berguiz
C. Al-Khwarizmi
D. Jan Nipper

Answer:
A. Arthur Cayley
ix) The formula of H.C.F of two polynomials is $p(x)$ and $q(x)$ is: (Mark 1)
A. $\frac{p(x) \times q(x)}{\text { L.C.M }}$
B. $\frac{L . C . M}{p(x) \times q(x)}$
C. $\frac{L . C . M \times p(x)}{q(x)}$
D. $\frac{L . C . M \times q(x)}{p(x)}$

Answer:
, A. $\frac{p(x) \times q(x)}{\text { L.C.M }}$
x) $\sqrt[2]{a}$ usually written as:
A. $(\mathrm{a})^{2}$
B. (Va)
C. $\mathrm{v}(\mathrm{a})^{2}$
D. Va^{2}

Answer:
B. (Va)
xi) Cartesian plan is divided into \qquad quadrants:
(Mark 1)
A. 3
B. 2
C. 4
D. 5

Answer:
C. 4
xii) Congruent figures have \qquad area.
(Mark 1)
A. Same
B. Different
C. No any
D. Empty

Answer:
A. Same
xiii) A ray has end points:
(Mark 1)
A. 1
B. 2
C. 3
D. 4

Answer:
A. 1
xiv) $x=0$ is a solution of the inequality
(Mark 1)
A. $x>0$
B. $3 x+5<0$
C. $x+2<0$
D. $x-2<0$

Answer:
D. $x-2<0$
xv) A ray is called a bisector of line segment if it divides the angle into \qquad equal parts:
(Mark 1)
A. 4
B. 3
C. 2
D. 5

Answer:
C. 2
Q. 2 i) Find the product:
Q. 2 ii) If
(Marks 2)

$$
2\left[\begin{array}{cc}
2 & 4 \\
-3 & a
\end{array}\right]+3\left[\begin{array}{cc}
1 & b \\
8 & -4
\end{array}\right]=\left[\begin{array}{cc}
7 & 10 \\
18 & 1
\end{array}\right]
$$

then find a and b .
Q. 2 iii) Give a rational number between 3/4 and 5/9.
(Marks 2)
Q. 2 iv)
(Marks 2)
Simplify $\left(x^{3}\right)^{2} \div x^{3^{2}} \quad ; x \neq 0$
Q. 2 v) Express the number 0.0074 in scientific notation.
Q. 2 vi) Calculate $\log _{3} 2 \times \log _{2} 81$
Q. 2 vii)

$$
\text { Evaluate } \frac{3 x^{2} \sqrt{y}+6}{5(x+y)} \text { if } x=-4 \text { and } y=9
$$

Q. 2 viii)
(Marks 2)
If $x=4-\sqrt{17}$ then find $x-\frac{1}{x}$
Q. 2 ix) Factorize $x(x-1)-y(y-1)$
(Marks 2)
Q. 3 i)
(Marks 2)
Use factorization to find the square root of $\frac{1}{16} x^{2}-\frac{1}{12} x y+\frac{1}{36} y^{2}$
Q. 3 ii) Define a linear inequality in one variable.
Q. 3 iii) Solve the inequality $3 x+1<5 x-4$
Q. 3 iv) Define Co-ordinate axes.
(Marks 2)
(Marks 2)
(Marks 2)
Q. 3 v) Verify whether the point $(2,3)$ lies on the line $2 x-y+1=0$ or not.
Q. 3 vi) Define isosceles triangle.
(Marks 2)
Q. 3 vii) Find the distance between the pairs of points: $A(9,2)$,
$B(7,2)$.
Q. 3 viii) State H.S postulate.
Q. 3 viii) State H.S postulate.

Q. 4 i) Define bisector of an angle.
(Marks 2)
Q. 4 ii) $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 7 cm are not the length of a triangle. Give the reason.
Q. 4 iii) Define proportion?
Q. 4 iv) Define Pythagoras theorem.
Q. 4 v) Find unknown value of x in given figure:
(Marks 2)

Q. 4 vi)

Q. 4 vii) State congruent area axiom.
(Marks 2)
Q. 4 viii)

Construct a $\triangle A B C$ in which $\mathrm{mAB}=4.8 \mathrm{~cm}, \mathrm{mBC}=3.7 \mathrm{~cm}$ \& $\mathrm{m} \angle \mathrm{B}=60^{\circ}$
Q. 4 ix) Define the ortho center of triangle
(Marks 2)
Q. 5 a) Solve the system of linear equations by using matrix inversion method: $3 x-4 y=4$, $x+2 y=8$
(Marks 4)
Q. 5 b)

$$
\text { blons fjosf }\left[\frac{x_{p}}{x_{c}}\right]_{a+p} \times\left[\frac{x_{c}}{x_{p}}\right]_{p+c} \times\left[\frac{x_{u}}{x_{c}}\right]_{c+c}=J
$$

Q. 6 a)
(Marks 4)
Solve with logarithm $\frac{0.678 \times 9.01}{0.0234}$
Q. 6 b)
(Marks 4)
If $p=2+\sqrt{3}$ then find the values of $p^{2}+\frac{1}{p^{2}}$
Q. 7 a)
(Marks 4)

If $(x-1)$ is a factor of $x^{3}-k x^{2}+11 x-6$, then find the value of k .
Q. 7 b) Find the square root of: $4 x^{4}+12 x^{3}+x^{2}-12 x+4$ (Marks 4)
Q. 8 a)
(Marks 4)
Find the solution set of the equation $\frac{5(x-3)}{6}-x=1-\frac{x}{9}$
Q. 8 b)

(Marks 4)

Construct a $\triangle \mathrm{ABC}$, and draw bisectors of angles. $\mathrm{m} \overline{\mathrm{CA}}=5.2 \mathrm{~cm}, \mathrm{~m} \overline{\mathrm{AB}}=4.2 \mathrm{~cm}, \mathrm{~m} \overline{\mathrm{BC}}=6 \mathrm{~cm}$ l
Q.9) Prove that the right bisectors of the sides of a triangle are concurrent.
(Marks 8)
OR
Q.9) Prove that parallelograms on equal bases and having the same (or equal) altitude are equal in area.
(Marks 8)

