Our solar systrem is a part of the universe. The universe is immense vast. Scientists tell that the universe is expanding. They also tell that there are more than 200,000,000,000 billion stars in the universe.
Exoplanets are planets beyond our own solar system. Thousands have been discovered in the past two decades, mostly with NASA's Kepler Space Telescope.
These worlds come in a huge variety of sizes and orbits. Some are gigantic planets hugging close to their parent stars; others are icy, some rocky. NASA and other agencies are looking for a special kind of planet: one that's the same size as Earth, orbiting a sun-like star in the habitable zone.
The habitable zone is the range of distances from a star where a planet's temperature allows liquid water oceans, critical for life on Earth. The earliest definition of the zone was based on simple thermal equilibrium, but current calculations of the habitable zone include many other factors, including the greenhouse effect of a planet's atmosphere. This makes the boundaries of a habitable zone "fuzzy."
Astronomers announced in August 2016 that they might have found such a planet orbiting Proxima Centauri. The newfound world, known as Proxima b, is about 1.3 times more massive than Earth, which suggests that the exoplanet is a rocky world, researchers said. The planet is also in the star's habitable zone, just 4.7 million miles (7.5 million kilometers) from its host star. It completes one orbit every 11.2 Earth-days. As a result, it's likely that the exoplanet is tidally locked, meaning it always shows the same face to its host star, just as the moon shows only one face (the near side) to Earth.
Most exoplanets have been discovered by the Kepler Space Telescope, an observatory that began work in 2009 and is expected to finish its mission in 2018, once it runs out of fuel. As of mid-March 2018, Kepler has discovered 2,342 confirmed exoplanets and revealed the existence of perhaps 2,245 others. The total number of planets discovered by all observatories is 3,706.
Early discoveries
While exoplanets were not confirmed until the 1990s, for years beforehand astronomers were convinced they were out there. That wasn't just wishful thinking, but because of how slowly our own sun and other stars like it spin, University of British Columbia astrophysicist Jaymie Matthews told Space.com. Matthews, the mission scientist of occasional exoplanet telescope observer MOST (Microvariability and Oscillations of STars), was involved in some of the early exoplanet discoveries.
Astronomers had an origin story for our solar system. Simply put, a spinning cloud of gas and dust (called the protosolar nebula) collapsed under its own gravity and formed the sun and planets. As the cloud collapsed, conservation of angular momentum meant the soon-to-be-sun should have spun faster and faster. But, while the sun contains 99.8 percent of the solar system's mass, the planets have 96 percent of the angular momentum. Astronomers asked themselves why the sun rotates so slowly.