0 like 0 dislike
50 views
in Computer Science by (1.0m points)
What causes the change in rocks?

1 Answer

0 like 0 dislike
by (1.0m points)

The Rock Cycle

The rock cycle, illustrated in Figure below, depicts how the three major rock types – igneous, sedimentary, and metamorphic - convert from one to another. Arrows connecting the rock types represent the processes that accomplish these changes.

Rocks change as a result of natural processes that are taking place all the time. Most changes happen very slowly. Rocks deep within the Earth are right now becoming other types of rocks. Rocks at the surface are lying in place before they are next exposed to a process that will change them. Even at the surface, we may not notice the changes. The rock cycle has no beginning or end.

The Three Rock Types

Rocks are classified into three major groups according to how they form. These three types are described in more detail in other concepts in this chapter, but here is a summary.

Igneous rocks form from the cooling and hardening of molten magma in many different environments. The chemical composition of the magma and the rate at which it cools determine what rock forms. Igneous rocks can cool slowly beneath the surface or rapidly at the surface. These rocks are identified by their composition and texture. More than 700 different types of igneous rocks are known.

Sedimentary rocks form by the compaction and cementing together of sediments, broken pieces of rock-like gravel, sand, silt, or clay. Those sediments can be formed from the weathering and erosion of preexisting rocks. Sedimentary rocks also include chemical precipitates, the solid materials left behind after a liquid evaporates.

Metamorphic rocks form when the minerals in an existing rock are changed by heat or pressure below the surface.

The Processes of the Rock Cycle

Several processes can turn one type of rock into another type of rock. The key processes of the rock cycle are crystallization, erosion and sedimentation, and metamorphism.

Crystallization

Magma cools either underground or on the surface and hardens into an igneous rock. As the magma cools, different crystals form at different temperatures, undergoing crystallization. For example, the mineral olivine crystallizes out of magma at much higher temperatures than quartz. The rate of cooling determines how much time the crystals will have to form. Slow cooling produces larger crystals.

Related questions

0 like 0 dislike
1 answer 43 views
asked Jan 4, 2019 in Geography by danish (1.0m points)
0 like 0 dislike
1 answer 304 views
asked Jan 1, 2019 in History by danish (1.0m points)
0 like 0 dislike
1 answer 43 views
asked Jan 29, 2019 in Science by danish (1.0m points)
0 like 0 dislike
1 answer 93 views
asked Dec 22, 2018 in Computer Science by danish (1.0m points)
0 like 0 dislike
0 answers 42 views
0 like 0 dislike
1 answer 63 views
0 like 0 dislike
0 answers 46 views
0 like 0 dislike
1 answer 44 views
0 like 0 dislike
1 answer 41 views
0 like 0 dislike
1 answer 39 views
asked Jan 2, 2019 in Geography by danish (1.0m points)
Welcome to Free Homework Help, where you can ask questions and receive answers from other members of the community. Anybody can ask a question. Anybody can answer. The best answers are voted up and rise to the top. Join them; it only takes a minute: School, College, University, Academy Free Homework Help

19.4k questions

18.3k answers

8.7k comments

4.1k users

Free Hit Counters
...