0 like 0 dislike
57 views
in Science by (1.0m points)
Compare the light wave with sound wave

1 Answer

0 like 0 dislike
by (1.0m points)

Light and sound both travel as waves.Light waves travel a million times faster than sounds waves.They can also travel through space.While sound waves cannot travel through space. 

Matt -

The key background to this question is the nature of sound waves and light waves. You’re right in that sound waves are a vibration traveling through an object, including "condensed" things like solids and liquids. In solids, those waves can consist of either alternating compressed and stretched regions, or regions wiggling sideways, compared to the direction the wave is traveling. Light is a wave of oscillating electric and magnetic fields perpendicular to the direction it’s going. Light can travel fine through a vacuum, which can have fields in it, but there can’t be sound in a vacuum

because there’s no stuff there to oscillate.

Audible sound has frequencies that cover a very big range, from about 20 Hz to 20,000 Hz, meaning that the pressure at your ear oscillates back and forth 20 to 20,000 times per second. Each frequency gives a different audible pitch. Visible light has frequencies from around 4*10^14 Hz to around 8*10^14 Hz. Each frequency gives a slightly different visible color. Not only are the light frequencies much higher, but the highest one is only about twice the lowest one. The sound frequencies are much lower, and the highest one is a thousand times higher than the lowest one. So you can see that there’s no direct match between the sound and light oscillations.

If you are wondering what effect the pigments (light absorbers) in a material have on the type of sounds that come from it, the answer is usually: not much. There’s not much connection between the frequencies of light some pigment absorbs and the frequencies of audible sound it might absorb or emit. The color of a  pigment also is really unconnected with the density or rigidity of the molecules, which affect how sound travels. Lots of different common pigments are organic compounds with densities not too far from 1 gram/cm^3, yet these provide a whole array of different colors.

On a different note. Musicians often refer to sound as having color. This refers to a different concept than the color that pigments give. When you overlap various pure tones of sound, the overall effect sounds different but has the same fundamental tone. For example, a trumpet sounds vastly different than a flute even if both are playing the same note. The difference (or color) comes from higher frequencies (called harmonics) that the instrument adds to the fundamental tone.

Related questions

0 like 0 dislike
0 answers 39 views
0 like 0 dislike
1 answer 52 views
0 like 0 dislike
1 answer 33 views
asked Nov 28, 2018 in Science by danish (1.0m points)
0 like 0 dislike
1 answer 51 views
0 like 0 dislike
0 answers 37 views
0 like 0 dislike
1 answer 58 views
0 like 0 dislike
1 answer 51 views
0 like 0 dislike
1 answer 60 views
0 like 0 dislike
0 answers 34 views
Welcome to Free Homework Help, where you can ask questions and receive answers from other members of the community. Anybody can ask a question. Anybody can answer. The best answers are voted up and rise to the top. Join them; it only takes a minute: School, College, University, Academy Free Homework Help

19.4k questions

18.3k answers

8.7k comments

6.3k users

Free Hit Counters
...