Body composition may be analyzed in terms of molecular type e.g., water, protein, connective tissue, fats (or lipids), hydroxylapatite (in bones), carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, muscle, bone, etc. In terms of cell type, the body contains hundreds of different types of cells, but notably, the largest number of cells contained in a human body (though not the largest mass of cells) are not human cells, but bacteria residing in the normal human gastrointestinal tract.
Elements
Almost 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium. All 11 are necessary for life. The remaining elements are trace elements, of which more than a dozen are thought on the basis of good evidence to be necessary for life. All of the mass of the trace elements put together (less than 10 grams for a human body) do not add up to the body mass of magnesium, the least common of the 11 non-trace elements.
Other elements
Not all elements which are found in the human body in trace quantities play a role in life. Some of these elements are thought to be simple bystander contaminants without function (examples: caesium, titanium), while many others are thought to be active toxics, depending on amount (cadmium, mercury, radioactives). The possible utility and toxicity of a few elements at levels normally found in the body (aluminium) is debated. Functions have been proposed for trace amounts of cadmium and lead, although these are almost certainly toxic in amounts very much larger than normally found in the body. There is evidence that arsenic, an element normally considered a toxin in higher amounts, is essential in ultratrace quantities, in mammals such as rats, hamsters, and goats.[1]
Some elements (silicon, boron, nickel, vanadium) are probably needed by mammals also, but in far smaller doses. Bromine is used abundantly by some (though not all) lower organisms, and opportunistically in eosinophils in humans. One study has found bromine to be necessary to collagen IV synthesis in humans.[2] Fluorine is used by a number of plants to manufacture toxins (see that element) but in humans only functions as a local (topical) hardening agent in tooth enamel, and not in an essential biological role