0 like 0 dislike
53 views
in Geography by (1.0m points)
How does climate change over the earth surface?

1 Answer

0 like 0 dislike
by (1.0m points)
There are various solar/celestial effects that exist which have an effect on Earth's climate. These effects usually occur in cycles, and primarily include how Earth's obliquity, the eccentricity of Earth's orbit, and the precession of the equinoxes and solstices affect Earth's climate. In addition to these effects, there are also other factors that have an effect on Earth's climate. These other factors include how sun activity affects climate[1] and how celestial phenomena, such as meteors, affect Earth's climate. Some of these factors aren't yet well understood, for instance the ice ages occur on 100,000 year cycles, and it's not completely understood why the various effects with this periodicity have such a strong effect on glaciation

Climate in general is an extremely complex system, dealing with temperature and weather conditions over an extended period of time. There are many things which influence Earth's climate. Among these many things, are various solar effects. Earth's climate is affected by a number of factors dealing with the Earth as a whole, in relation to its position in the space relative to the sun. These factors include the angle of Earth's axial tilt (also known as Earth's obliquity), the eccentricity of Earth's orbit (how circular/elliptical Earth's orbit is), and Earth's position in time in the precession of the solstices and equinoxes (with different Earth-Sun distances during any given season).[2]

Although these are the primary three factors in shaping Earths climate, there are other, external, factors that can help shape Earth's climate. These external factors usually affect Earth climate on a very different time scale than the other three, and include factors such as meteors striking Earth and geomagnetic storms.[3] These external forces usually contribute to climate change on a time scale, as meteorites strike the earth, on average, every 50 to 100 million years, where as geomagnetic storms occur periodically through the sun's eleven-year activity cycle. With all of these factors affecting climate in their own way, it becomes easy to see that Earth's climate is in fact, largely dependent on various solar effects/circumstances.

Perhaps one of the most apparent factors contributing to Earth climate change is the angle at which the earth is tilted. This is the angle at which Earth's axis of rotation is from the vertical, also known as Earth's obliquity. Earth's current tilt angle is approximately 23.5 degrees. The axial tilt angle affects climate largely by determining which parts of the earth get more sunlight during different stages of the year. This is the primary cause for the different seasons Earth experiences throughout the year, as well as the intensity of the seasons for higher latitudes. For example, in the Northern Hemisphere, if there were no axial tilt, i.e. Earth's obliquity would be zero degrees, then there would be no change in the seasons from year to year. This would be because there would be no difference in the amount of solar irradiation received, year-round, anywhere on Earth. On the other hand, if Earth's axial tilt angle was great (45+ degrees), the seasonality of each hemisphere, individually, would be highly exaggerated. Summers would be extremely hot, with substantially more hours of daylight than night each day. Winters would be extremely cold, with substantially more hours of night than daylight each day. This is because, during summer for the northern hemisphere, if the earth is tilted more (pointed towards the sun more), there would be more available hours in which the suns rays can strike any certain place, thereby increasing the number of daylight hours at any given place, with more and more daylight hours at higher latitudes. Also, because the northern hemisphere would be tilted much more towards the sun, it would be physically closer to the sun, thereby increasing the intensity of the sun's rays hitting the northern hemisphere, thereby causing the northern hemisphere to become hotter. Likewise, during winter for the northern hemisphere, there would be fewer hours of daylight because the northern hemisphere would essentially be pointed away from the sun. Fewer daylight hours means less solar radiation hitting the northern hemisphere, especially at higher latitudes, and therefore causing the northern hemisphere to become colder. The same things can also be said about the southern hemisphere, particularly at high latitudes. In either case, the climate around the equator is not affected nearly as much as the higher latitudes, thereby creating a sizable difference in how obliquity affects different latitudes. This is all, of course, dependent on what the actual tilt angle is at any given point in time. The thing is, though, that Earth does in fact change obliquity over time in a cyclic pattern. Earth's obliquity does not change much, though, as obliquity has been determined to cycle between the small range of 22.2 degrees to 24.5 degrees, in a cycle that lasts approximately 41,000 years.[2][4] Therefore, with the small tilt variation over time, the Earth has always been thought to have had a seasonal climate, at least in the high latitudes due to the solar affect of changing Earth obliquity.

Related questions

0 like 0 dislike
1 answer 274 views
0 like 0 dislike
1 answer 154 views
0 like 0 dislike
1 answer 50 views
0 like 0 dislike
1 answer 61 views
asked Dec 11, 2018 in Geography by danish (1.0m points)
0 like 0 dislike
1 answer 41 views
0 like 0 dislike
1 answer 55 views
0 like 0 dislike
1 answer 53 views
0 like 0 dislike
1 answer 46 views
0 like 0 dislike
1 answer 61 views
asked Feb 2, 2019 in Pak. Studies by danish (1.0m points)
0 like 0 dislike
1 answer 39 views
Welcome to Free Homework Help, where you can ask questions and receive answers from other members of the community. Anybody can ask a question. Anybody can answer. The best answers are voted up and rise to the top. Join them; it only takes a minute: School, College, University, Academy Free Homework Help

19.4k questions

18.3k answers

8.7k comments

6.3k users

Free Hit Counters
...